0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

A Validation Study on Mechanical Properties of Foam Concrete with Coarse Aggregate Using ANN Model

Auteur(s):


Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 1, v. 13
Page(s): 218
DOI: 10.3390/buildings13010218
Abstrait:

The usage of foam concrete (FC) was extended from being used as a filler material to an alternative concrete due to the effect of conventional concrete on global warming. The diversified perspective on FC as an alternative to conventional concrete is due to its low density (400–1800 kg/m³) and good thermal conductivity, which also results in the reduction of costs in production, labor, and transportation. Generally, FC is produced by adding a pre-made foam to the cement slurry consisting of cement and aggregates. Here, the study was carried out by the addition of a coarse aggregate and foaming agent (i.e., 12%, 6%, 3%, 2%, 1%) at varying percentages in FC to improve the strength characteristics. FC was tested for its physical and mechanical properties. From the experimental results, an Artificial Neural Network (ANN) was developed to predict the strength of FC. The results from training and testing of the Polynomial Regression Analysis model (PRA) through ANN have shown great potential in predicting compression, split tensile, and flexural strength of FC. It was found that the strength of FC is increased with the reduction of foam volume and increase in coarse aggregate volume. However, a strength of 25.6 N/mm² is achieved when 1% foam and 50% coarse aggregate is used.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10712579
  • Publié(e) le:
    21.03.2023
  • Modifié(e) le:
    10.05.2023
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine