0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Research on the Correlations between Spatial Morphological Indices and Carbon Emission during the Operational Stage of Built Environments for Old Communities in Cold Regions

Auteur(s):



Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 9, v. 13
Page(s): 2222
DOI: 10.3390/buildings13092222
Abstrait:

The escalation of the urban population and energy demands has exacerbated the carbon emission intensity at the operational stage of urban old communities. The spatial elements of the built environments comprising building groups, roads and landscape, and the spatial morphology of these elements, are endowed not only with human activities but also impact local microclimates and overall carbon emissions. Nonetheless, little attention has been paid to the correlation mechanism between the spatial morphology of the urban built environments and carbon emissions. In this paper, the aim is to combine carbon emissions simulation and statistical analysis to find the correlation between the spatial morphological indices and carbon emissions and to bridge the gaps. Thus, guided by the principles of urban energy modeling, this research adopts a parametric process of “information model construction–carbon emission simulation–statistical analysis”. First, taking 60 typical samples of an old community in Jinan, China, as objects, morphological indices such as density, texture and layout are analyzed through regression analysis to highlight their impacts on carbon emissions. Then, a carbon emission prediction model based on spatial morphological indices is established and verified. The results show that the floor area ratio (FAR), building coverage ratio (BCR), enclosure degree (ED), shape factor (SF) and average road aspect ratio (AS) have significant impacts on carbon emissions during the operational stage. Among these indices, the FAR and the ED are identified as the pivotal influencers. The findings confirm the important role of spatial morphological design of old communities in cold regions in improving urban carbon reduction potential, and they provide theoretical underpinnings and empirical data as references for urban morphology design formulated within the context of low-carbon objectives.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10737131
  • Publié(e) le:
    02.09.2023
  • Modifié(e) le:
    14.09.2023
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine