0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Auteur(s):

Médium: article de revue
Langue(s): anglais
Publié dans: Journal of Building Materials and Structures, , n. 2, v. 4
Page(s): 42-49
DOI: 10.34118/jbms.v4i2.30
Abstrait:

The large development in the consumption of rubber is observed in the recent years, which leads to an increase of the production of rubber related waste. Rubbers are not hazardous waste, but they constitute a hazard for both environment and health, in case of fire in storage sites. So, recycling appears as one of the best solutions for disposing of rubber waste.This paper presents an experimental investigation dealing with the valorisation of rubber waste, specifically rubber obtained from old shoes sole waste. The waste rubbers are used form (0/5 mm) to mixes as addition at percentage (10%, 20%, 30% and 40%) in sand concrete. The physical (workability, bulk density), mechanical (compressive and flexural strength) and thermal properties are studied and analysed.The results indicate that the incorporation of rubber waste particles in sand concrete contributes to increase the workability and reduce the bulk density of all studied sand concrete. The obtained results show that mechanical performance (compressive and flexural strength) decreases when the rubber content increases. Nevertheless, the presence of rubber aggregate leads to a significant reduction in thermal conductivity, which improves the thermal insulation performances of sand concrete. This study insures that reusing of recycled rubber waste in sand concrete gives a positive approach to reduce the cost of materials and solve some environmental problems.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.34118/jbms.v4i2.30.
  • Informations
    sur cette fiche
  • Reference-ID
    10747315
  • Publié(e) le:
    07.12.2023
  • Modifié(e) le:
    07.12.2023
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine