0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Experimental and Analytical Investigation on Flexural Behavior of High-Strength Steel-Concrete Composite Beams

Auteur(s):



Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 4, v. 13
Page(s): 902
DOI: 10.3390/buildings13040902
Abstrait:

This research investigated the flexural behavior of high-strength steel (HSS)—concrete composite beams. The effect of concrete strength on the load-deflection behavior, flexural capacity, and ductility of HSS—concrete composite beams was investigated. Four full-scale HSS—concrete composite beam specimens were tested under static load. The test results demonstrate that the failure mode of HSS—concrete composite beams is flexural failure of the steel member and compression fracture of concrete at mid-span. The HSS—concrete composite beam exhibits good mechanical performance and deformation behavior. The ultimate bending strength and ductility of HSS—concrete composite beams were improved with the increased concrete strength. The theoretical results demonstrate that the simplified plastic method overestimates the ultimate bending strength of HSS—concrete composite beams. The main reason is that only a small part of the steel beam bottom shows plastic strengthening, which is not enough to make up for the strength loss caused by the steel near the neutral axis failure to yield and the relative interface slip. The nonlinear method based on material constitutive model could predict the load-bearing capacity accurately. After analyzing the ultimate bending capacity of 192 sample beams, the simplified plastic method was modified, and the theoretical method for ultimate bearing capacity of HSS—concrete composite beams was proposed.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10728445
  • Publié(e) le:
    30.05.2023
  • Modifié(e) le:
    01.06.2023
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine