0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Establishment and Application of the Wind and Structural Health Monitoring System for the Runyang Yangtze River Bridge

Auteur(s): ORCID

ORCID
ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Shock and Vibration, , v. 2014
Page(s): 1-15
DOI: 10.1155/2014/421038
Abstrait:

Structural health monitoring can provide a practical platform for detecting the evolution of structural damage or performance deterioration of engineering structures. The final objective is to provide reasonable suggestions for structural maintenance and management and therefore ensure the structural safety according to the real-time recorded data. In this paper, the establishment of the wind and structural health monitoring system (WSHMS) implemented on the Runyang Yangtze River Bridge (RYRB) in China is introduced. The composition and functions of the WSHMS are presented. Thereinto, the sensory subsystem utilized to measure the input actions and structural output responses is introduced. And the core functions of the data management and analysis subsystem (DMAS) including model updating, structural condition identification, and structural condition assessment are illustrated in detail. A three-stage strategy is applied into the FE model updating of RYRB, and a two-phase strategy is proposed to adapt to structural health diagnosis and damage identification. Considering the structural integral security and the fatigue characteristic of steel material, the condition assessment of RYRB is divided into structural reliability assessment and structural fatigue assessment, which are equipped with specific and elaborate module for effective operation. This research can provide references for the establishment of the similar structural health monitoring systems on other cable-supported bridges.

Copyright: © 2014 Hao Wang, Aiqun Li, Tong Guo, Tianyou Tao
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 3.0 (CC-BY 3.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée.

  • Informations
    sur cette fiche
  • Reference-ID
    10676365
  • Publié(e) le:
    28.05.2022
  • Modifié(e) le:
    01.06.2022
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine