0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Comparative Analysis of Resource and Climate Footprints for Different Heating Systems in Building Information Modeling

Auteur(s):
ORCID
ORCID
ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 11, v. 12
Page(s): 1824
DOI: 10.3390/buildings12111824
Abstrait:

Buildings play an important role to meet Sustainable Development Goals, especially regarding the use of resources and greenhouse gas emissions. They are increasingly designed with energy-efficient solutions regarding their operations, while the related use of natural resources is still insufficiently considered. In this article, a methodology in Building Information Modeling is proposed to measure the resource and climate footprints of buildings’ heating systems. The methodology is applied to a case study building in Germany. The studied heating systems include a gas condensing boiler, ground-source heat pump, ground-source heat pump with a photo-voltaic system and air-source heat pump backed up with a gas boiler. Next to the operational energy, the production and transport of the heating systems were also studied. Results show that heating system operations have the largest impact and that the variant of ground-source heat pump combined with photovoltaics (GSHP + PV) has the lowest impact. In comparison with the gas boiler (GB), savings of 75%, 47%, 80%, and 84% are addressed to climate, material, energy, and land footprints, respectively, while the water footprint of GSHP + PV is 73% higher than that of GB.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10700243
  • Publié(e) le:
    10.12.2022
  • Modifié(e) le:
    15.02.2023
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine